

Original Article Open Access

Age-related effect of trimetazidine in the prevention of contrast-induced nephropathy in patients with preserved renal function

Filiz Akyıldız Akçay¹, Volkan Emren¹, Serap Çuhadar², Selcen Yakar Tülüce³, Özgen Şafak⁴, Emre Özdemir¹, İbrahim Ertekin⁵

Received: May 07, 2025 Accepted: August 04, 2025 Published online: August 29, 2025

ABSTRACT

Objectives: This study aims to investigate whether trimetazidine (TMZ) alone has a preventive effect on contrast-induced nephropathy (CIN) in patients with preserved kidney function who underwent angiographic procedures and the variables associated with CIN development.

Patients and methods: Between June 2023 and September 2023, a total of 305 patients (199 males, 106 females; mean age: 60±10 years; range, 54 to 67 years) who underwent coronary angiographic procedures with diagnosed or suspected stable coronary artery disease and an estimated glomerular filtration rate (eGFR) of >60 mL/min/1.73 m² were included. A total of 153 patients received TMZ (TMZ group), while 152 patients were naïve to TMZ (non-TMZ group).

Results: Ten patients (6.5%) in the non-TMZ group and nine patients (5.8%) in the TMZ group developed CIN within 48 to 72 h (p=0.801) after the procedures. The mean serum creatinine level increased from 0.84±0.1 mg/dL to 0.89±0.2 mg/dL in the non-TMZ group (p<0.001) and from 0.84±0.1 mg/dL to 0.88±0.2 mg/dL in the TMZ group (p=0.008). Multivariate logistic regression analysis revealed that only age (odds ratio [OR]: 1.10, 95% CI: 1.03-1.18, p=0.003) was an independent predictor of CIN. A cut-off value of 60 years (area under the curve [AUC]=0.785; sensitivity, 100%; specificity, 52%) predicted CIN development in the non-TMZ group, whereas it was 72.5 years (AUC=0.711; sensitivity, 55%; specificity, 90%) for the TMZ group.

Conclusion: Our study results suggest that the use of TMZ may be beneficial on CIN in elderly patients undergoing coronary angiographic procedures, even if the eGFR is \geq 60 mL/min/1.73 m².

Keywords: Age, contrast-induced acute kidney injury, contrast-induced nephropathy, coronary angiography, percutaneous coronary intervention, trimetazidine.

Contrast-induced nephropathy (CIN) is a serious complication of angiographic procedures, resulting from the administration of iodinated contrast media (CM).^[1] It is the third most common cause of acute kidney injury in patients requiring hospitalization and is associated with a consequent worsening clinical outcome.^[2,3] Among all procedures using CM for diagnostic or therapeutic purposes, coronary angiography (CAG) and percutaneous coronary interventions (PCIs) are associated with the highest rates of CIN.^[2]

Various variables on CIN have been identified, and the Mehran risk score for the prediction of CIN development was defined.^[4] Pre-existing kidney disease with high serum creatinine level is the

most important risk factor for the development of CIN. Various studies have shown that an estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73 m² is a reliable cut-off point for identifying patients at high risk for developing CIN. Several studies have provided evidence

Corresponding author: Filiz Akyıldız Akçay, MD. İzmir Katip Çelebi Üniversitesi Atatürk Eğitim ve Araştırma Hastanesi, Kardiyoloji Kliniği, 35360 Karabağlar, İzmir. Türkiye.

E-mail: drfilizkrd@hotmail.com

Citation:

Akyıldız Akçay F, Emren V, Çuhadar S, Yakar Tülüce S, Şafak Ö, Özdemir E, et al. Age-related effect of trimetazidine in the prevention of contrast-induced nephropathy in patients with preserved renal function. Cardiovasc Surg Int 2025;12(3):188-195. doi: 10.5606/e-cvsi.2025.1903.

¹Department of Cardiology, İzmir Katip Çelebi University Atatürk Training and Research Hospital, İzmir, Türkiye

²Department of Clinical Biochemistry, İzmir Katip Celebi University Atatürk Training and Research Hospital, İzmir, Türkiye

³Department of Cardiology, Private Clinic, İzmir, Türkiye

⁴Department of Cardiology, Balıkesir University Faculty of Medicine, İzmir, Türkiye

⁵Department of Nephrology, İzmir Katip Çelebi University Atatürk Training and Research Hospital, İzmir, Türkiye

that advanced age is an independent predictor of CIN.^[5] In particular, individuals over the age of 70 are considered at risk for CIN.^[6,7]

Currently, intravenous (IV) fluid hydration therapy is the only widely accepted treatment to prevent the disease. Since no additional pharmaceuticals have been proven to effectively treat CIN, preventing its development is of critical importance. Trimetazidine (TMZ) is one of the drugs currently being studied for the prevention of CIN. It has traditionally been used as an anti-ischemic drug for coronary artery disease (CAD) by selectively inhibiting mitochondrial long-chain 3-ketoacyl-CoA thiolase and appears to have a hemodynamically neutral side-effect profile. [8,9]

In the present study, we aimed to investigate the protective effect of TMZ alone on CIN in patients with diagnosed or suspected stable CAD (SCAD) and preserved kidney function who underwent angiographic procedures and the variables associated with CIN development.

PATIENTS AND METHODS

This single-center, prospective, observational study was conducted at Katip Celebi University Atatürk Training and Research Hospital, Department of Cardiology between June 1st, 2023 and September 30th, 2023. Patients with eGFR >60 mL/min/1.73 m², older than 18 years of age, diagnosed or suspected SCAD, and CAG indications were included in the study. Patients who regularly used 35 mg of TMZ dihydrochloride twice a day for the last 48 h and continued treatment for at least 48 to 72 h after the procedure (initiated and/or started by a cardiologist), and patients who did not use TMZ before and after the procedure were compared in terms of the frequency of development of CIN. Those with baseline renal failure (eGFR <60 mL/min/1.73 m²), patients under 18 years of age, pregnant and lactating women, hypotensive patients, patients who received contrast material in the last two weeks, patients who took non-steroidal anti-inflammatory drugs or nephrotoxic antibiotics within the past seven days, patients who received intensive IV hydration, patients who used N-acetylcysteine or antioxidant agents and patients under ranolazine treatment were excluded from the study. The drugs mostly eliminated by the kidney, such as metformin and angiotensin enzyme inhibitors or receptor blockers, were not discontinued before the procedure. A total of 305 patients (199 males, 106 females; mean age: 60±10 years; range, 54 to 67 years) were included in the study. Written informed consent was obtained from each patient. The study protocol was approved by the İzmir Katip Çelebi University Clinical Research Ethics Committee (Date: 10.03.2022, No: 28). The study was conducted in accordance with the principles of the Declaration of Helsinki.

Data collection

Case report forms were filled in prospectively with patient data registered in the Hospital Information Management System, patient files, and information obtained through face-to-face interviews. Demographic characteristics, history, presence of chronic diseases, physical examinations, laboratory tests, imaging tests, and medications used by the patients were recorded.

Peripheral venous blood samples of the patients were obtained at baseline (within 24 h before the procedure) and 48 to 72 h after the procedure. Pre-procedure eGFR, creatinine, and blood urea nitrogen (BUN) levels, biochemical parameters, complete blood count, and post-procedure creatinine and BUN levels of patients were recorded. Anemia was defined as a hemoglobin concentration less than 13 g/dL in men and 12 g/dL in women. An eGFR was calculated according to the Modification of Diet in Renal Disease (MDRD) equation. [9]

Interventional procedures were evaluated in three groups: (i) CAG; (ii) PCI with/without CAG; (iii) CAG and other angiography procedures (carotid angiography, peripheral angiography, aortography, ventriculography). Angiographic procedures were performed by experienced cardiologists via standard techniques, who were blinded to details of the study. A low-osmolar, non-ionic, monomeric contrast agent, iohexol (350 mg of iodine per mL; 780 mOsm per kg of water [Omnipaque, Amersham Health, GE Healthcare Cork, Ireland]) was used in all patients. The amount of CM was recorded. The Mehran score was used to estimate CIN development risk. [9] Contrast-induced nephropathy was defined as an increase in creatinine of ≥25% or ≥0.5 mg/dL within 48 to 72 h after contrast material administration if other predisposing factors for renal injury did not occur.[10]

190 Cardiovasc Surg Int

			Table 1	le 1							
Compa	Comparisons of baseline characteristics between the non-TMZ group and the TMZ group	characte	ristics betwee	en the no	n-TMZ gro	ıp and 1	he TM	Z group			
			Non-TMZ group $(n=152)$	group				TMZ group (n=153)	ф		
	u	%	Mean±SD	IQR	01-03	u	%	Mean±SD	IQR	01-03	Þ
Clinical characteristics											
Age (year)			59.7±11.0					61.2 ± 9.22			0.172
Sex Male	101	66.4				86	64.0				0.750
BMI (kg/m²)			28.63±5.19)) :	29.52±4.80			0.135
Diabetes mellitus	61	40.1				59					0.870
Hypertension	91	59.9				106					0.110
Dyslipidemia	86	64.5				111					0.163
Anemia	38	25.0				34	22.2				0.568
Current smoking	44	28.9				59					0.098
LVEF (%)			56.90 ± 8.38					56.56±6.92			0.395
Laboratory findings											
Fasting blood glucose (mg/dL)				106	97.0-129				106	96.0-122	0.862
Baseline serum creatinine (mg/dL)				0.82	0.74-0.92				0.82	0.74-0.93	0.830
Baseline eGFR (mL/min/1.73 m ²)				8.68	75.7-102				0.88	77.0-99.0	0.437
Hemoglobin (g/dL)			13.7 ± 1.68					13.7±1.69			0.862
Total cholesterol (mg/dL)				190	166-230				190	160-221	0.870
LDL cholesterol (mg/dL)			121 ± 40.6					117 ± 40.9			0.417
HDL cholesterol (mg/dL)				43.0	36.0-50.0				40.0	33.0-48.0	0.038
Triglyceride (mg/dL)				139	95.0-180				161	108-214	0.008
In Hospital Medication	į	1				1	,				6
Insulin	24	15.8				25.	16.3				1.000
Mettormin	18	11.8				CI	9.80				0.698
Other oral antidiabetic	18	11.8				70	13.1				0.879
ACEi - ARB	82	53.9				84	54.9				0.958
Diuretic	33	21.7				44	28.8				0.199
Statin	72	47.4				87	53.6				0.331
Beta blocker	80	52.6				109	71.2				0.001
Calcium channel blocker	17	11.2				30	19.6				090.0
Nitrate	23	15.1				47	30.7				0.002
SD: Standard deviation; IQR: Interquartile range; Q; Quartile; BMI: Body mass index; LVEF: Left ventricular ejection fraction; eGFR: Estimated glomerular filtration rate; LDL: Low-density lipoprotein; ACEi: Angiotensia-converting enzyme inhibitor; ARB: Angiotensia II receptor blocker.	Quartile; BMI: Body inverting enzyme inhibi	nass indexitor; ARB:	LVEF: Left ver Angiotensin II re	ntricular eje eceptor bloc	ction fraction; e ker.	GFR: Est	imated g	lomerular filtratio	n rate; LD	L: Low-density	ipoprotein;

The modified Simpson's method (biplane disc method) was used for left ventricular ejection fraction (LVEF) measurement with the EPIQ 7C unit (Philips Medical Imaging, Eindhoven, Netherlands) as recommended by the European Association of Cardiovascular Imaging (EACVI).^[11]

Statistical analysis

Based on previous studies, the incidence of contrast-induced nephropathy was estimated to be 5-10%. Accordingly, the study calculated a minimum sample size of 300 patients to achieve 80% power with a 0.05 margin of error.

Statistical analysis was performed using the IBM SPSS version 24.0 software (IBM Corp., Armonk, NY, USA). Compliance of numerical data with normal distribution was evaluated using the Kolmogorov-Smirnov tests. Continuous data were expressed in mean ± standard deviation (SD) or median (Q1-Q3), while categorical data were expressed in number and frequency. The Mann-Whitney U test was used to compare numerical variables between two independent groups, and the Wilcoxon test was used to compare two dependent groups. The chi-square test was used to compare categorical variables. Multivariate logistic regression analysis was used to explore possible predictors of CIN. Receiver operating characteristic (ROC) curve analysis values were presented to evaluate the effect

of age on the CIN occurrence in patients using and not using TMZ. A *p* value of <0.05 was considered statistically significant with 95% confidence interval (CI).

RESULTS

The TMZ and non-TMZ groups had similar baseline characteristics: age, sex, body mass index (BMI), underlying disease, LVEF, eGFR, serum creatinine, and hemoglobin levels (Table 1). Patients in the TMZ group were more frequently ordered to receive beta-blocker (71.2% vs. 52.6%; p<0.001) or nitrate therapies (30.7% vs. 15.1%; p<0.002). While 19.6% of the patients in the TMZ group were taking calcium channel blockers, 11.2% of the patients in the non-TMZ group were taking calcium channel blockers (p=0.06).

Table 2 shows the comparison of angiographic procedure characteristics between the non-TMZ and TMZ groups. There were no significant differences between the two groups in terms of angiographic procedure type, amount of contrast volume used during these procedures, and the distribution of the Mehran score. Ten patients (6.5%) in the non-TMZ group and nine patients (5.8%) in the TMZ group developed CIN within 48 to 72 h (p=0.801) after the procedures.

Comparison of angiographic pro	cedure c		Table 2	tween the no	n-TM2	Z group	and the	TMZ group	
		Non-	TMZ gr (n=152)			TN	MZ grou (n=153)	<u> </u>	
	n	%	IQR	Q1-Q3	n	%	IQR	Q1-Q3	Þ
Angiographic procedures									
CAG	52	34.2			61	39.9			
PCI + angiographic procedures	46	30.3			44	28.8			0.574
CAG + other angiographic procedures	54	35.5			48	31.4			
Contrast volume (mL)			70.0	50.0-180			80.0	50.0-150	0.628
Mehran score			3.00	0.00-4.25			3.00	0.00-4.00	
Categorical of Mehran score									
Low	127	83.6			128	83.7			
Moderate	25	16.4			24	15.7			0.001
High	0	0.00			1	0.65			0.801
CIN	10	6.6			9	5.9			

192 Cardiovasc Surg Int

Table 3 Serum creatinine and BUN changes between baseline and 48-72 h after invasive procedures in groups							
	Baseline	48-72 hours					
	Mean±SD	Mean±SD	P				
Non-TMZ group							
Creatinine (mg/dL)	0.84±0.1	0.89 ± 0.2	< 0.001				
BUN (mmol/L)	16.0±4.6	16.3±4.9	0.297				
TMZ group							
Creatinine (mg/dL)	0.84±0.1	0.88±0.2	0.008				
BUN (mmol/L)	15.1±4.1	16.0±3.0	0.299				
BUN: Blood urea nitrogen; SD: Standard	deviation; TMZ: Trimetazidin	e group.					

Table 3 summarizes serum creatinine and BUN level changes between baseline and 48 to 72 h after invasive procedures. The mean serum creatinine level increased from 0.84±0.1 mg/dL to 0.89±0.2 mg/dL (p<0.001) in the non-TMZ group and from 0.84±0.1 mg/dL to 0.88±0.2 mg/dL (p=0.008) in the TMZ group.

Ta	ble 4		
Predictors of contrast-induce			ltivariate
logistic	c analysi	s	
	OR	95% C1	Þ
Age	1.10	1.03-1.18	0.003
Sex (male)	2.42	0.58-10.10	0.225
Trimetazidine	0.93	0.31-2.74	0.899
Diabetes mellitus	1.49	0.50-4.42	0.464
Dislipidemia	0.79	0.23-2.71	0.710
Current smoking	1.15	0.35-3.74	0.813
Contrast volume	1.00	0.99-1.01	0.225
Anemia	0.62	0.17-2.49	0.473
LVEF	3.69	0.72-18.94	0.117
eGFR	0.99	0.96-1.03	0.96
ACEi - ARB	1.67	0.46-5.94	0.429
Nitrate	0.52	0.12-2.20	0.379
Diuretic	1.30	0.38-4.42	0.672
Beta blocker	0.61	0.20-1.91	0.405
Statine	2.18	0.67-7.04	0.192

OR: Odds ratio; CI: Confidence interval; LVEF: Left ventricular ejection fraction; eGFR: Estimated glomerular filtration rate; ACEi: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin II receptor blocker.

Multivariate analysis of variables, including clinical features, medical history, amount of contrast used, medications, and blood parameters thought to be related to CIN, is presented in Table 4. Multivariate analysis revealed that only age (odds ratio [OR]: 1.10, 95% CI: 1.03-1.18, p=0.003) was an independent predictor of CIN. The ROC analysis was performed to identify the most optimal cut-off values for age as a predictor of CIN development. A cut-off value of 60 years (area under the curve [AUC]=0.785; sensitivity 100%, specificity 52%) predicted CIN development in patients naïve to TMZ use, while it was 72.5 years (AUC=0.711; sensitivity 55%, specificity 90%) for patients receiving TMZ (Figure 1).

DISCUSSION

In the current study, we investigated the protective effect of TMZ alone on CIN in patients with diagnosed or suspected SCAD and preserved kidney function who underwent angiographic procedures and the variables associated with CIN development. Susceptibility to the development of CIN was demonstrated even in patients with an eGFR ≥60 mL/min/1.73 m². Trimetazidine only displayed an age-dependent renoprotective effect in patients undergoing coronary procedures rather than preventing CIN in all of the study group.

Patients with an eGFR ≥60 mL/min/1.73 m² are typically not monitored like those at risk; thus, they do not receive prophylaxis or are admitted for a longer time in the hospital to follow renal laboratory parameters. Therefore, their renal injury

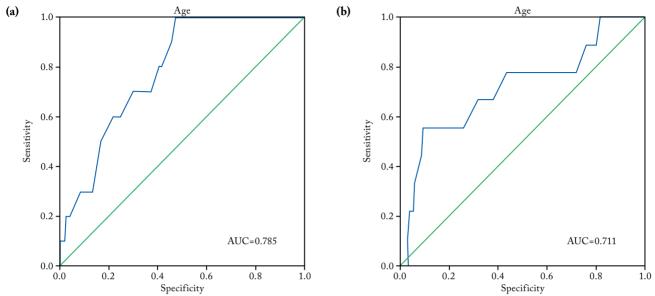


Figure 1. Receiver operating characteristic curve referring to the diagnostic performance of age in identifying patients with contrast induced nephropathy. (a) In patients without trimetazidine treatment and (b) in patients with trimetazidine treatment

might be underestimated. Our study showed that, in patients with an eGFR \geq 60 mL/min/1.73 m², age was an important factor showing the vulnerability to CIN. In daily clinical practice, these patients do not receive IV hydration similar to our study, and our findings show that careful follow-up of the elderly is still warranted even, if their baseline renal function is within normal limits.

Although the complex pathophysiology of CIN still needs to be further determined. After intravascular administration of CM, a prolonged period of renal vasoconstriction develops due to imbalanced release of nitrous oxide, adenosine, endothelin, prostaglandin and reactive oxygen species (ROS) from the vascular endothelium indirect response to cytotoxicity caused by CM. [12] The ischemic tissue prolongs the duration of vasoconstriction by secreting more harmful vasoactive ROS and other mediators. [1]

The preservative effects of TMZ on kidney function were attributable to reducing ischemia-reperfusion injury, changes in renal glutathione reductase, catalase, and superoxide dismutase activities in animal models. However, contrary to the well-known cardiac protection of TMZ in humans, renoprotective data are still conflicting.

In a study by Onbasili et al.,^[13] CIN developed in 2.5% (1/40) of patients in the TMZ group and

in 16.6% (7/42) of patients in the non-TMZ group. TMZ, along with isotonic saline infusion, is more effective than isotonic saline alone in reducing the risk of CIN in patients with pre-existing renal dysfunction (serum creatinine level >1.2 mg/dL or eGFR <50 mL/min/1.73 m²). In this study, serum total antioxidant capacity (TAC) decreased insignificantly after administration of CM and returned to baseline values after 2 h in both the TMZ and non-TMZ groups, with no significant difference between the treatment groups. Although no additional measurements were made at the tissue level, this finding is inconsistent with the assumption of a renoprotective effect attributed to the antioxidant effect of the drug. Shehata et al.[14] showed an association with a reduction in the incidence of CIN and myocardial injury with TMZ intake before elective PCI in a small number of diabetic patients with mild-to-moderate renal dysfunction (eGFR of 30 to <90 mL/min/1.73 m²). In this study, patients who received IV saline, N-acetylcysteine, and TMZ were compared with those who received IV saline and N-acetylcysteine. Similarly, Ibrahim et al., [15] in their study including 100 patients with baseline eGFR 30 to <90 mL/min/1.73 m² and who underwent CAG procedures, administered both groups parenteral hydration in the form of isotonic saline, while giving

194 Cardiovasc Surg Int

TMZ treatment to one study arm. They found a significant difference in the ratio of CIN between the TMZ and non-TMZ groups (26% vs. 10%), but the contrast amount was significantly higher in the CIN group (165.00±108.41 vs. 89.85±38.60, p=0.000). [15] In our study, a more verifiable comparison could be made in terms of renoprotection, since there was also a treatment arm that received only TMZ without the use of IV hydration and/or N-acetylcysteine.

In the study of Chen et al., [16] they found that CoQ10 plus TMZ reduced the incidence CIN in patients with renal failure (eGFR ≤60 mL/min/1.73 m²) who underwent elective cardiac catheterization, and they attributed this result to a strong anti-oxidation effect. As this study did not separately evaluate the protective effect of CoQ10 and TMZ on CIN, it cannot emphasize the effect of TMZ alone. In the study of Mirhosseni et al.,[17] among patients who underwent angiographic procedures with eGFR of 30 to <60 mL/min/1.73 m², one group received saline, while another group received saline and TMZ. This study failed to show that the use of TMZ protects the development of CIN (p>0.05). Lian et al.[18] showed that TMZ did not significantly decrease the risk of CIN in unselected patients undergoing PCI, even based on the alternate CIN definitions and different subgroup analyses. Since this study did not focus on specific patient groups and a high number of patients were included in the study, the results of the study may be more convenient for clinical practice. In the study of Zhang et al., [19] TMZ was found to be profitable in the preventive treatment of CIN occurrence in elderly diabetic patients with moderate and high risk according to MRS. In this study, patients were sub-grouped according to age ranges. Similar to our study, it was emphasized that the age factor was effective in the development of CIN.

In the Martha et al.'s^[20] systematic review and meta-analysis of seven studies involving a total of 1590 patients, the prevalence of CIN was 6% in the TMZ group and 16% in the non-TMZ group. Subgroup analysis of patients showed that TMZ reduced the risk of CIN in patients with renal impairment. However, age, BMI, hypertension, diabetes, ejection fraction, baseline serum creatinine level, and contrast medium volume were not found to be significant in the development of CIN.^[20]

The kidney is one of the fastest aging organs, and some structures and functions decline with age. It is known that oxidative stress plays a role in the pathogenesis of acute and chronic kidney disease, hypertensive and diabetic nephropathy.^[21] Nitric oxide (NO) plays a critical role in the endothelium during kidney disease and oxidative stress. Low NO levels induce the expression of anti-oxidative genes and contribute to the protection of renal endothelial and mesangial cells from apoptosis and fibrosis.^[22] We predict that TMZ reduces kidney damage with its antioxidant activity, particularly in elderly patients. Trimetazidine improves endothelium-dependent relaxation (EDR), increases NO bioavailability, and decreases ROS levels.^[23]

Nonetheless, this study has certain limitations that need to be addressed. First, although power analysis was performed, our results need to be validated in larger prospective clinical trials. Second, relatively low-risk patients (eGFR ≥60 mL/min/1.73 m²) were included in this study; thus, high-risk patients should be investigated further. Third, although patients were followed adequately for CIN occurrence according to the recommendations, following patients for a longer period would have yielded more favorable results. Finally, the mechanism of the protective effect of TMZ in a relatively older population still remains unclear and should be investigated in future studies.

In conclusion, the development of CIN should be considered even in patients with an eGFR ≥60 mL/min/1.73 m² scheduled for CAG. Risk factors should be carefully observed before and after the use of CM, particularly in elderly patients, and it should be kept in mind that the use of TMZ may be beneficial, particularly in elderly patients with appropriate indications.

Data Sharing Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author Contributions: Concept and design: F.A.; Rafting of the article: V.E.D.; Analysis of data: S.C.; Collection of data: S.Y.T.; Critical revision: Ö.Ş.; Provision of study: E.Ö.; Analysis of data: İ.E.

Conflict of Interest: The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Funding: The authors received no financial support for the research and/or authorship of this article.

REFERENCES

- Rear R, Bell RM, Hausenloy DJ. Contrast-induced nephropathy following angiography and cardiac interventions. Heart 2016;102:638-48. doi: 10.1136/ heartjnl-2014-306962.
- Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002;39:930-6. doi: 10.1053/ ajkd.2002.32766.
- 3. Weisbord SD, Palevsky PM, Kaufman JS, Wu H, Androsenko M, Ferguson RE, et al. Contrast-associated acute kidney injury and serious adverse outcomes following angiography. J Am Coll Cardiol 2020;75:1311-20. doi: 10.1016/j.jacc.2020.01.023.
- 4. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J Am Coll Cardiol 2004;44:1393-9. doi: 10.1016/j.jacc.2004.06.068.
- Mehran R, Nikolsky E. Contrast-induced nephropathy: Definition, epidemiology, and patients at risk. Kidney Int Suppl 2006;(100):S11-5. doi: 10.1038/sj.ki.5000368.
- Palli E, Makris D, Papanikolaou J, Garoufalis G, Zakynthinos
 E. Contrast-induced nephropathy in aged critically ill
 patients. Oxid Med Cell Longev 2014;2014:756469. doi: 10.1155/2014/756469.
- 7. Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older. A prospective study. Arch Intern Med 1990;150:1237-42.
- 8. Zou H, Zhu XX, Ding YH, Jin QY, Qian LY, Huang DS, et al. Trimetazidine in conditions other than coronary disease, old drug, new tricks? Int J Cardiol 2017;234:1-6. doi: 10.1016/j.ijcard.2017.02.083.
- 9. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the Modification of Diet In Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 2007;53:766-72. doi: 10.1373/clinchem.2006.077180.
- Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012;120:c179-84. doi: 10.1159/000339789.
- 11. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.e14. doi: 10.1016/j. echo.2014.10.003.
- 12. Heyman SN, Rosen S, Khamaisi M, Idée JM, Rosenberger C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol 2010;45:188-95. doi: 10.1097/RLI.0b013e3181d2eed8.

- 13. Onbasili AO, Yeniceriglu Y, Agaoglu P, Karul A, Tekten T, Akar H, et al. Trimetazidine in the prevention of contrast-induced nephropathy after coronary procedures. Heart 2007;93:698-702. doi: 10.1136/hrt.2006.097477.
- 14. Shehata M. Impact of trimetazidine on incidence of myocardial injury and contrast-induced nephropathy in diabetic patients with renal dysfunction undergoing elective percutaneous coronary intervention. Am J Cardiol 2014;114:389-94. doi: 10.1016/j.amjcard.2014.04.052.
- 15. Ibrahim TA, El-Mawardy RH, El-Serafy AS, El-Fekky EM. Trimetazidine in the prevention of contrast-induced nephropathy in chronic kidney disease. Cardiovasc Revasc Med 2017;18:315-9. doi: 10.1016/j.carrev.2017.02.006.
- 16. Chen F, Liu F, Lu J, Yang X, Xiao B, Jin Y, et al. Coenzyme Q10 combined with trimetazidine in the prevention of contrast-induced nephropathy in patients with coronary heart disease complicated with renal dysfunction undergoing elective cardiac catheterization: A randomized control study and in vivo study. Eur J Med Res 2018;23:23. doi: 10.1186/s40001-018-0320-2.
- 17. Mirhosseni A, Farahani B, Gandomi-Mohammadabadi A, Keyvani H, Biglari-Abhari M, Davari A, et al. Preventive effect of trimetazidine on contrast-induced acute kidney injury in CKD patients based on urinary Neutrophil Gelatinase-Associated Lipocalin (uNGAL): A randomized Clinical Trial. Iran J Kidney Dis 2019;13:191-7.
- 18. Lian X, He W, Zhan H, Chen J, Tan N, He P, et al. The effect of trimetazidine on preventing contrast-induced nephropathy after cardiac catheterization. Int Urol Nephrol 2019;51:2267-72. doi: 10.1007/s11255-019-02308-w.
- 19. Zhang X, Zhang P, Yang S, Li W, Men X, Fu N. Preventive effect of trimetazidine on contrast-induced nephropathy undergoing percutaneous coronary intervention in elderly moderate and high risk diabetics stratified by mehran score. Perfusion 2021;36:491-500. doi: 10.1177/0267659120952057.
- 20. Martha JW, Pranata R, Wibowo A, Irvan I, Afrianti R, Akbar MR. The effect of trimetazidine on contrast-induced nephropathy in patients undergoing coronary angiography and/or percutaneous coronary intervention A systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 2021;25:3045-53. doi: 10.26355/eurrev_202104_25558.
- 21. Irazabal MV, Torres VE. Reactive oxygen species and redox signaling in chronic kidney disease. Cells 2020;9:1342. doi: 10.3390/cells9061342.
- 22. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 2016;25:119-46. doi: 10.1089/ars.2016.6665.
- 23. Godo S, Shimokawa H. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free Radic Biol Med 2017;109:4-10. doi: 10.1016/j.freeradbiomed.2016.12.019.